Modified Normal Vector Voting Estimation in neuroimage
نویسندگان
چکیده
The normal vector is one of the metrics that are sensitive to the property of the curved surface. In neuroimage studies, normal vectors are used to strip skulls, to analyze cortical thickness, to assess the principle direction of diffusion tenor and to estimate the location of neural activities. However, conventional methods to estimate the vertex normal on the tessellated mesh are sensitive to irregular triangulation and noise signals occurred from the previous processing to construct a cortical surface model form MRI volume data. In the present project, an algorithm is proposed to estimate a normal vector on a vertex in a more precise fashion. Following the idea Normal Vector Voting algorithm [1], Modified Normal Vector Voting algorithm is implemented. Simulations on a sphere and a complex surface were performed with various amount of noise to assess the proposed method comparing to conventional ones. The errors of estimation from the proposed method were the least in all performed cases demonstrating the robust estimation to noise of the proposed algorithm. The large amount of computational load of the proposed algorithm remains as a further problem for practical application.
منابع مشابه
Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملNormal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes
This paper describes a robust method for crease detection and curvature estimation on large, noisy triangle meshes. We assume that these meshes are approximations of piecewise-smooth surfaces derived from range or medical imaging systems and thus may exhibit measurement or even registration noise. The proposed algorithm, which we call normal vector voting, uses an ensemble of triangles in the g...
متن کاملVector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling
We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009